The evolution of bet-hedging adaptations to rare scenarios.
نویسندگان
چکیده
When faced with a variable environment, organisms may switch between different strategies according to some probabilistic rule. In an infinite population, evolution is expected to favor the rule that maximizes geometric mean fitness. If some environments are encountered only rarely, selection may not be strong enough for optimal switching probabilities to evolve. Here we calculate the evolution of switching probabilities in a finite population by analyzing fixation probabilities of alleles specifying switching rules. We calculate the conditions required for the evolution of phenotypic switching as a form of bet-hedging as a function of the population size N, the rate theta at which a rare environment is encountered, and the selective advantage s associated with switching in the rare environment. We consider a simplified model in which environmental switching and phenotypic switching are one-way processes, and mutation is symmetric and rare with respect to the timescale of fixation events. In this case, the approximate requirements for bet-hedging to be favored by a ratio of at least R are that sN>log(R) and thetaN>square root R .
منابع مشابه
Modes of response to environmental change and the elusive empirical evidence for bet hedging.
Uncertainty is a problem not only in human decision-making, but is a prevalent quality of natural environments and thus requires evolutionary response. Unpredictable natural selection is expected to result in the evolution of bet-hedging strategies, which are adaptations to long-term fluctuating selection. Despite a recent surge of interest in bet hedging, its study remains mired in conceptual ...
متن کاملMultiple mating in the Glanville fritillary butterfly: a case of within-generation bet hedging?
Many hypotheses have been proposed to explain multiple mating in females. One of them is bet hedging, that is avoiding having no or very few offspring in any given generation, rather than maximizing the expected number of offspring. However, within-generation bet hedging is generally believed to be an unimportant evolutionary force, except in very small populations. In this study, we derive pre...
متن کاملEvolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants.
Understanding the adaptations that allow species to live in temporally variable environments is essential for predicting how they may respond to future environmental change. Variation at the intergenerational scale can allow the evolution of bet-hedging strategies: a novel genotype may be favoured over an alternative with higher arithmetic mean fitness if the new genotype experiences a sufficie...
متن کاملStochasticity in the Genotype-Phenotype Map: Implications for the Robustness and Persistence of Bet-Hedging
Nongenetic variation in phenotypes, or bet-hedging, has been observed as a driver of drug resistance in both bacterial infections and cancers. Here, we study how bet-hedging emerges in genotype-phenotype (GP) mapping through a simple interaction model: a molecular switch. We use simple chemical reaction networks to implement stochastic switches that map gene products to phenotypes, and investig...
متن کاملBet-hedging as an evolutionary game: the trade-off between egg size and number
Bet-hedging theory addresses how individuals should optimize fitness in varying and unpredictable environments by sacrificing mean fitness to decrease variation in fitness. So far, three main bet-hedging strategies have been described: conservative bet-hedging (play it safe), diversified bet-hedging (don’t put all eggs in one basket) and adaptive coin flipping (choose a strategy at random from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theoretical population biology
دوره 72 4 شماره
صفحات -
تاریخ انتشار 2007